Analysis of the RACS scholarship programme over the last 5 years (2012–2016) demonstrates a total number of 405 applicants, with 166 scholarships/Fellowships awarded. This gives a success rate of 41%, which is not only encouraging, being higher than that of the National Health and Medical Research Council† (at approximately 20% for Career Development Fellowships and 16% for Project Grants), but also reflects the competitive nature of the RACS scholarship programme. Furthermore, the level of funding per-capita for RACS is approximately $1.8 million per annum for 6086 Fellows and 1245 Trainees, which encouragingly is similar to that of the Royal College of Surgeons of England which awards the equivalent of approximately $5 million for 20 000 members (equating to a similar level of funding per person in each college).

An important outcome to note from this review is that 78% of respondents were able to achieve a higher degree as a result of the scholarship programme despite the majority of the scholarships having a 1-year term. This would imply that it might be beneficial to increase the duration of a number of the scholarships to a 2- or 3-year term. Without further donations, however, this may be difficult to establish and sustain.

Other direct outcomes from the scholarship and the impact on scholars’ careers and quality of health care are difficult to objectively analyse. However, it was encouraging to note that 90.0% of scholars believed they had acquired the skill of critically evaluating scientific information and 67.5% of respondents significantly improved their non-technical skills which are important attributes for all surgeons to acquire, and 70.7% of scholars conducted further independent research following the scholarship-funded period. Furthermore, almost half of the scholars received subsequent research grants that were not awarded by the RACS.

The RACS scholarship programme has succeeded in supporting Surgical Trainees/ Junior Fellows and makes key contributions to the surgery-related scientific literature.

References
5. Osteoarthritis (OA) is a degenerative disease that causes pain, stiffness and decreased function. Treatment utilizing mesenchymal stem cells (MSCs) has become a focus of interest as the successful regeneration of cartilage represents a new minimally invasive, non-surgical alternative. Yet, is it a truly legitimate treatment option?

Presently, there are various treatment measures, including microfracture and subchondral drilling, which are performed in an attempt to regenerate articular cartilage. These modalities are generally reserved for defects less than 2–3 cm² and in patients younger than 40 years.† As such, this review addresses only the potential for treatment of advanced OA as well as the lack of quality evidence.

MSCs are pluripotent adult stem cells found in numerous human tissues, including bone marrow and adipose tissue. These MSCs are then placed into various growth factors to mature into higher numbers. The product is then injected into the damaged joint or bound with a scaffold and imbedded into an area of defect. A signal is then introduced to begin the cell differentiation process into articular cartilage (Fig. 1).

Bone marrow-derived MSCs have been utilized in patients who were unresponsive to conservative therapy. Patients reported subjective improvement in symptoms, whilst objective results are limited to apparent improvements in clinical examination.‡ Arthroscopic surgery has been used to objectively classify cartilage defects using the International Cartilage Repair Society (ICRS) grading system. Koh et al. treated 37 patients with adipose-derived MSCs, and at mean follow-up of 26.5 months, 76% of cartilage lesions remained in the abnormal or severely abnormal state. Authors concluded that tissue-engineered scaffolds may be needed to improve cartilage repair.¶

Tissue-engineered scaffolds, such as fibrin glue, have been postulated to improve osteochondral regeneration. However, there is no evidence to date that shows a statistically significant difference between treatment and control groups. In addition, using a higher dose of MSCs has shown improvement in osteochondral regeneration, yet it cannot be concluded that a higher dose is more effective than an optimal patient dose, which is currently unknown.

Encouraging results have been reported with combination therapy using adipose-derived MSCs with platelet-rich-plasma and arthroscopic lavage. However, it is impossible to determine whether

© 2016 Royal Australasian College of Surgeons
Clinics in Australia offering MSC therapy raise hope about the treatability of advanced knee OA, although its safety and efficacy has not been established. As a result, the National Health and Medical Research Council do not recommend the use of MSCs for the treatment of knee OA.

Internationally, stem cell clinics can be located in countries with variable standards of medical care. The significant financial burden of travel expenses combined with an unproven treatment can cause patient harm, even if they do not directly cause adverse health effects.

Whilst it is ultimately the patient’s decision whether they decide to undertake unproven MSC treatment or not, medical practitioners have a responsibility to ensure their patient makes a well-informed decision and understands the potential risks. Therefore, clinicians need to remain aware of the lack of robust evidence and use MSCs at their own discretion.

References

Fig. 1. Alternate means of delivery of MSCs into cartilage lesions in knee OA. (a) Direction intra-articular injection of MSCs in solution. (b) Direct surgical implantation of MSCs in matrix scaffold. Reproduced from Kristjanson and Honsawek,* with permission.